
Performance, memory, and parallelism

December 4, 2023

Ian May

Department of Applied Mathematics
University of California Santa Cruz

Santa Cruz, CA



25
1Introduction

So far in this course we haven’t talked very much about how to write
performant code.

Overview for today
What performance means
Hierarchy of parallelism
Transparent parallelism
Optimizing compilers
Memory and cache
Multithreading and message passing

Acknowledgments: Material partially adapted from Prof. LeVeque’s
lecture notes on scientific computing

Ian May Perf-Par-Mem UC Santa Cruz



25

2What is performant code?

Expend the smallest time and energy to perform a task
Problem dependent
Hardware dependent
Generally, fully utilizing resources is best

• Keep the processor saturated

Don’t optimize too early!!

Ian May Perf-Par-Mem UC Santa Cruz



25

2What is performant code?

Expend the smallest time and energy to perform a task
Problem dependent
Hardware dependent
Generally, fully utilizing resources is best

• Keep the processor saturated

Don’t optimize too early!!

Ian May Perf-Par-Mem UC Santa Cruz



25

3Achieving better performance: The old way

Be patient and buy better hardware
Each generation transistors got smaller, and chips got denser. This
had a few major impacts:

Architecture upgrades came out frequently
Caches (sometimes) got larger
Distinct units on the chip were physically closer
Clock speeds got faster
Floating point units got more advanced

You could speed up your code by simply waiting for a new generation
of hardware.

Ian May Perf-Par-Mem UC Santa Cruz



25

4The need for parallelism
Moore’s law, Dennard scaling, etc.

Power limits and clock speeds
Clock speeds have (mostly) stopped increasing. Two major
bottlenecks are:

1. Electric signals can only travel a certain distance per clock cycle
(speed of light actually matters)

2. Faster clocks require higher power draw
• Hard to remove waste heat fast enough
• Hard to design small chips capable of transmitting that power

A new bottleneck – Memory
Despite stagnation in clock speed increase, most programs are really
bottlenecked by the time required to interact with main memory
(DRAM).
Key observation: Quite a bit of performance can be gained without
parallelism. Understanding the hardware can take you quite far.

Ian May Perf-Par-Mem UC Santa Cruz



25

4The need for parallelism
Moore’s law, Dennard scaling, etc.

Power limits and clock speeds
Clock speeds have (mostly) stopped increasing. Two major
bottlenecks are:

1. Electric signals can only travel a certain distance per clock cycle
(speed of light actually matters)

2. Faster clocks require higher power draw
• Hard to remove waste heat fast enough
• Hard to design small chips capable of transmitting that power

A new bottleneck – Memory
Despite stagnation in clock speed increase, most programs are really
bottlenecked by the time required to interact with main memory
(DRAM).

Key observation: Quite a bit of performance can be gained without
parallelism. Understanding the hardware can take you quite far.

Ian May Perf-Par-Mem UC Santa Cruz



25

4The need for parallelism
Moore’s law, Dennard scaling, etc.

Power limits and clock speeds
Clock speeds have (mostly) stopped increasing. Two major
bottlenecks are:

1. Electric signals can only travel a certain distance per clock cycle
(speed of light actually matters)

2. Faster clocks require higher power draw
• Hard to remove waste heat fast enough
• Hard to design small chips capable of transmitting that power

A new bottleneck – Memory
Despite stagnation in clock speed increase, most programs are really
bottlenecked by the time required to interact with main memory
(DRAM).
Key observation: Quite a bit of performance can be gained without
parallelism. Understanding the hardware can take you quite far.

Ian May Perf-Par-Mem UC Santa Cruz



25

5Hierarchy of parallelism
An incomplete list

Modern computers (can) exploit parallel computing in
many ways

1. Bit level parallelism
2. Instruction pipelining
3. Superscalar processors and SIMD
4. (Simultaneous) Multithreading
5. Distributed computing

Some are totally transparent (1,2), mostly transparent (3), or fully
explicit (4,5)

Other routes: Discrete co-processors, e.g. GPUs.

Ian May Perf-Par-Mem UC Santa Cruz



25

5Hierarchy of parallelism
An incomplete list

Modern computers (can) exploit parallel computing in
many ways

1. Bit level parallelism
2. Instruction pipelining
3. Superscalar processors and SIMD
4. (Simultaneous) Multithreading
5. Distributed computing

Some are totally transparent (1,2), mostly transparent (3), or fully
explicit (4,5)

Other routes: Discrete co-processors, e.g. GPUs.

Ian May Perf-Par-Mem UC Santa Cruz



25

6

Instruction pipelining

What makes the processor do useful work?
Roughly a five step sequence:

1. Fetch instruction
2. Decode instruction
3. Execute instruction
4. Memory access
5. Write back result

Many instructions will require further steps (so-called
micro-operations).

Memory access can add indeterminate overhead.

Ian May Perf-Par-Mem UC Santa Cruz



25

7Hardware considerations
Cartoon of a modern CPU

Figure: Labeled die shot of an AMD Zen core.

Ian May Perf-Par-Mem UC Santa Cruz



25

8

Instruction pipelining

The steps in the pipeline are processed by distinct units
Idea: Keep all units busy by processing the next instruction before the
current one completes.

Some difficulties arise:
How do you resolve instructions that require a different number
of clock cycles?
How do you handle wait time for memory accesses?
How do you handle instructions that depend on each other?

There is a lot of tuning involved, but hardware manufacturers have
mostly settled on what works well.

Ian May Perf-Par-Mem UC Santa Cruz



25

9Instruction pipelining
Ideal execution

Figure: Schematic of the history of a pipelining processor. Each color
corresponds to a distinct instruction. Courtesy of Wikipedia.

Ian May Perf-Par-Mem UC Santa Cruz



25

10Instruction pipelining
Pipeline bubbles

Figure: Pipeline history including a hazard. Courtesy of Wikipedia.

Ian May Perf-Par-Mem UC Santa Cruz



25
11Superscalar processors and SIMD

Consider adding two vectors to each other.
The same exact operations will be done many times over
Pipelining and prefetching can hide some cost
There ought to be a way to optimize this pattern further...

Superscalar processing
Notice that there is one instruction that needs to be applied to many
different pieces of data.

SIMD: Single instruction multiple data

Throughput can be improved by packaging data together and acting
on it simultaneously. This requires special hardware and instructions.

Ian May Perf-Par-Mem UC Santa Cruz



2512

Querying your own hardware
What can your processor actually do?

Linux provides a wealth of information
The /proc directory holds interesting informational files

• /proc/cpuinfo Information about your CPU
• /proc/meminfo Information about your memory

lscpu shows information similar to that in /proc/cpuinfo

lsmem shows information similar to that in /proc/meminfo

lstopo shows this information diagramatically

Vendor information pages are also incredibly useful.

Ian May Perf-Par-Mem UC Santa Cruz



2513

Optimizing compilers
Another incomplete list

Transforming human readable code into executable
instructions
Optimizing compilers will try to generate better machine instructions
without changing the function of a program.

Lots of transformations of the code can be performed automatically:
Function inlining
Loop unrolling
Automatic vectorization (e.g. pack and issue SIMD instructions)
Operation re-ordering
Operation fusing (e.g. fused-multiply-add)

Ian May Perf-Par-Mem UC Santa Cruz



25
14

Optimization with GCC
Yet another incomplete list

Some flags for GCC compilers (gfortran, gcc, g++)
-O2 Many generic optimizations, alignment, peepholes, some
inlining
Alternatively, -O3, Same as prior but also adds more loop
optimizations (and other stuff)
-march=native -mtune=native Optimize the code specifically
for the architecture being compiled on. Binaries will likely not
be portable!
Try adding -fopt-info-vec-all. This will dump info in stderr,
capture it with 2>

Ian May Perf-Par-Mem UC Santa Cruz



25

15

Automatic vectorization

What ways can you think of to use SIMD?
We often need to perform the same operation many times over. Think
of how many loops we have written that have fairly simple bodies.

Problem: Hard-coding SIMD operations is hard, and not portable.
What can we do instead?

Solution: Let the compiler do it for us! Of course, we need to write
code that the compiler can actually optimize...

Ian May Perf-Par-Mem UC Santa Cruz



25

16

Automatic vectorization

Part of what makes Fortran so fast
The restricted memory model that Fortran assumes is in place
(partially) to make automatic vectorization really easy for the compiler.

How to make C similarly fast (gcc)
The auto-vectorization engine underneath gcc is the same as the one
under gfortran. However, C allows much more general memory
access.
To promote automatic vectorization you need to restrict C in the same
way as in default Fortran. The relevant keyword is restrict.

Ian May Perf-Par-Mem UC Santa Cruz



25

17

Memory access times
Cache – DRAM – SDD/HDD

Data is stored in many places on your machine
How many cycles are needed before the processor can interact with
data stored in different places?

Processor register: ∼ 1 cycle
L1 cache: ∼ 5 cycles
L2 cache: ∼ 10− 20 cycles
L3 cache: ∼ 50− 100 cycles
DRAM: ∼ 1000 cycles
SDD/HDD: More, probably...

Many of the optimizations are present to increase cache hit rate.

Ian May Perf-Par-Mem UC Santa Cruz



25

18

Hardware considerations
Cartoon of a modern CPU (again)

Figure: Labeled die shot of an AMD Zen core.

Ian May Perf-Par-Mem UC Santa Cruz



25

19

Being nice to your cache

Consider a sample program
Purpose: fill a (moderately) large matrix, and perform a matrix vector
product.

Pre-fetching and spatial locality
Traversing the matrix in the same order as it is stored lets the
hardware fetch memory very efficiently
Traversing in the wrong order is bad
Traversing in the wrong order with N=8192 is very bad

• Lots of cache collisions

The optimizer is very effective, but performs best when the
underlying code is reasonable

Ian May Perf-Par-Mem UC Santa Cruz



25

19

Being nice to your cache

Consider a sample program
Purpose: fill a (moderately) large matrix, and perform a matrix vector
product.

Pre-fetching and spatial locality
Traversing the matrix in the same order as it is stored lets the
hardware fetch memory very efficiently
Traversing in the wrong order is bad
Traversing in the wrong order with N=8192 is very bad

• Lots of cache collisions

The optimizer is very effective, but performs best when the
underlying code is reasonable

Ian May Perf-Par-Mem UC Santa Cruz



25

20

Multithreading
Shared memory parallelism

So far everything we’ve said applies to a single processing unit (core).
Threads: One (part of a) program running on one core is called a
thread of execution

Hardware considerations
Memory controller mediates access to main memory
Private L1 caches need to remain coherent
Need to snapshot thread state to handle switching and interrupts

Software considerations
OS needs to understand how to schedule threads
Many serial algorithms require significant re-design to work in
parallel
Atomicity, mutual exclusion, and race conditions, oh my!

Ian May Perf-Par-Mem UC Santa Cruz



25

20

Multithreading
Shared memory parallelism

So far everything we’ve said applies to a single processing unit (core).
Threads: One (part of a) program running on one core is called a
thread of execution

Hardware considerations
Memory controller mediates access to main memory
Private L1 caches need to remain coherent
Need to snapshot thread state to handle switching and interrupts

Software considerations
OS needs to understand how to schedule threads
Many serial algorithms require significant re-design to work in
parallel
Atomicity, mutual exclusion, and race conditions, oh my!

Ian May Perf-Par-Mem UC Santa Cruz



25

20

Multithreading
Shared memory parallelism

So far everything we’ve said applies to a single processing unit (core).
Threads: One (part of a) program running on one core is called a
thread of execution

Hardware considerations
Memory controller mediates access to main memory
Private L1 caches need to remain coherent
Need to snapshot thread state to handle switching and interrupts

Software considerations
OS needs to understand how to schedule threads
Many serial algorithms require significant re-design to work in
parallel
Atomicity, mutual exclusion, and race conditions, oh my!

Ian May Perf-Par-Mem UC Santa Cruz



25

21

Task based parallelism
OpenMP

Many workloads can be split into distinct, independent, tasks.

OpenMP – Directive based parallelism
Programmer responsible for dividing up workload and handling
dependencies
A software runtime batches tasks out to available threads/cores
Pragmas (C/C++) or special comments (Fortran) indicate regions
of parallel execution
Works well for parallel loops, divide and conquer, reductions, etc.
Memory access patterns more important than ever!

Ian May Perf-Par-Mem UC Santa Cruz



25

22

Using more machines
Distributed memory parallelism

Single machine, shared memory parallelism has its limitations.
Workloads can be spread, i.e. distributed, across multiple machines.

Hardware considerations
Machines need to communicate with each other
File systems often also distributed
Lots of complicated networking involved

Software considerations
Each machine needs a copy of the program
Something needs to synchronize these programs

• Manage communication
• Propagate faults/failures

Programmer needs to think in a fundamentally different way

Ian May Perf-Par-Mem UC Santa Cruz



25

22

Using more machines
Distributed memory parallelism

Single machine, shared memory parallelism has its limitations.
Workloads can be spread, i.e. distributed, across multiple machines.

Hardware considerations
Machines need to communicate with each other
File systems often also distributed
Lots of complicated networking involved

Software considerations
Each machine needs a copy of the program
Something needs to synchronize these programs

• Manage communication
• Propagate faults/failures

Programmer needs to think in a fundamentally different way

Ian May Perf-Par-Mem UC Santa Cruz



25

22

Using more machines
Distributed memory parallelism

Single machine, shared memory parallelism has its limitations.
Workloads can be spread, i.e. distributed, across multiple machines.

Hardware considerations
Machines need to communicate with each other
File systems often also distributed
Lots of complicated networking involved

Software considerations
Each machine needs a copy of the program
Something needs to synchronize these programs

• Manage communication
• Propagate faults/failures

Programmer needs to think in a fundamentally different way

Ian May Perf-Par-Mem UC Santa Cruz



25

23

Message passing interface (MPI)

By far, the most common way to handle these software complexities
is the Message passing interface.

The programming model
A software runtime coordinates all involved machines
Runtime can send/receive messages between distinct machines
The user doesn’t need to know much about the HW
implementation
There is no concept of serial regions and parallel regions
There are no shared variables between processes
MPI is just a standard

• Common implementations: MPICH, OpenMPI, MVAPICH

Ian May Perf-Par-Mem UC Santa Cruz



25
24

GPUs and Coprocessors

You’ve undoubtedly heard about GPU computing. What makes this
approach so amazing?

Heterogeneous computing
Key idea: Use different hardware for different tasks, allowing more
aggressive optimization.
GPUs have a few distinct features:

Massively parallel, 1000’s of cores
Substantially different memory architecture, often no enforced
coherence
Minimal instruction pipelining
Hardware-based thread scheduler

GPUs can provide massive throughput, but only for appropriate
workloads.

Ian May Perf-Par-Mem UC Santa Cruz



25
24

GPUs and Coprocessors

You’ve undoubtedly heard about GPU computing. What makes this
approach so amazing?

Heterogeneous computing
Key idea: Use different hardware for different tasks, allowing more
aggressive optimization.
GPUs have a few distinct features:

Massively parallel, 1000’s of cores
Substantially different memory architecture, often no enforced
coherence
Minimal instruction pipelining
Hardware-based thread scheduler

GPUs can provide massive throughput, but only for appropriate
workloads.

Ian May Perf-Par-Mem UC Santa Cruz



2525
Where to learn more

Applied mathematics
AM 250: An Introduction to High Performance Computing

• Provides a nice introduction to thinking in terms of distributed
memory parallelism

AM 148: GPU Programming for Scientific Computations
• A good introduction to the particularities of GPUs

Computer science and engineering
CSE 113: Parallel Programming

• I can’t directly speak about this one

CSE 226: Advanced Parallel Processing
• Lot’s of detail about hardware internals and their design

Ian May Perf-Par-Mem UC Santa Cruz


