
Beginner Fortran 90 tutorial (part 2)

1 Modules

Modules were introduced in Fortran 90, and greatly help with the organization
of a single program, and with linking routines across many different programs.
They are very versatile, and have many different uses. In this Section, we will
learn a few of them.

First, note that a module should be viewed as a library. That library can
contain different things, such as a list of important universal constants (if you
are writing a program for physics computations for instance), or a list of func-
tions or subroutines that you often use, or a list of variables that are common
to many routines in a single program, and that need to be shared by all these
routines. The structure of a module is usually of the form:

module nameofmodule

declarations of variables

contains

list of functions and routines

end module nameofmodule

Any program, function or subroutine that needs to access a particular module
usually has, just after its first line (e.g. program thisprog, or subroutine myroutine),
the statement use nameofmodule. Here is an example of a module that con-
tains various important constants, and then of a program that uses them.

module mathconsts

implicit none

real, parameter :: pi = acos(-1.0)

real, parameter :: e = exp(1.0)

end module mathconsts

1

program sillyprog

use mathconsts

real :: x

x = cos(pi)

write(*,*) ’The cosine of pi is ’,x

x = log(e)

write(*,*) ’The natural log of e is ’,x

end program sillyprog

The advantage of doing this rather than declaring π and e in the program
sillyprog is that we can from now on call this module from any program,
routine or function we ever write.

Exercise 1: Save the module in a file called mathconsts.f90 and the program
in a file called sillyprog.f90. To compile this module with the program, sim-
ply type the command gfortran mathconsts.f90 sillyprog.f90 -o test.exe.
Run the program. Does this behave as you expected?

Modules, as described earlier, can also be used to create a library of the rou-
tines and functions you may commonly use. In fact, one of the goals of the first
part of this course will be to create a ”linear algebra module” that contains all
of your linear algebra routines. Next, we will start creating that module, and
study the advantage of putting functions and routines in a module rather than
separately.

2 Allocatable arrays

In section last week we learned about arrays, and defined them in a static way
at the start of the program. This means that some memory space has to be
reserved at the beginning of the program for the array, and that memory space
cannot be modified later. This is usually not a problem if the task at hand
is very predictable, e.g. if the program always has to deal with matrices of a
predictable size. However consider an example in which you may want to do
some data processing (e.g. multiple images, or time-signals), but the data in
question varies a lot in size. With this static allocation, the only way to deal
with varying size is to reserve upfront the largest possible memory space (to
accommodate for any possible dataset size) and later to only use a part of it if the
problem is smaller than this maximum size. This method is quite wasteful, and
often requires a lot of inelegant commands to deal with the difference between
the actual array size and the reserved array size.

This used to be the standard in Fortran 77. From Fortran 90 onward, it has

2

become possible to allocate arrays ”on the fly”, that is, even after the program
has started. To do so, the arrays have to be defined at the beginning of the
program as allocatable. Once the desired array size is known, we can then
create it using the command allocate. Once we’re done using it, we release
the memory space using deallocate. Here is an example, in which the program
first reads the array size, then creates the array, then reads it in, then calculates
its trace, then deallocates the memory space. The ”read and allocate” routine,
and trace function are both stored in a module.

program firstLinAlprog

use LinAl

real,dimension(:,:), allocatable :: mat

real :: x

character*100 filename

if(iargc().ne.1) then

write(*,*) ’Wrong number of arguments (need file name)’

stop

endif

call getarg(1,filename)

call readandallocatemat(mat,filename)

x = trace(mat)

write(*,*) ’The trace of this matrix is ’, x

deallocate(mat)

end program firstLinAlprog

module LinAl

implicit none

integer :: nsize,msize

integer :: i,j

contains

subroutine readandallocatemat(mat,filename)

character*100 filename

real, dimension(:,:), allocatable :: mat

open(10,file=filename)

read(10,*) nsize,msize

3

allocate(mat(nsize,msize))

do i=1,nsize

read(10,*) (mat(i,j), j=1,msize)

write(*,*) (mat(i,j), j=1,msize)

enddo

close(10)

end subroutine readandallocatemat

real function trace(mat)

real, dimension(nsize,msize) :: mat

trace = 0.

if(nsize.ne.msize) then

write(*,*) ’This is not a square matrix, cannot calculate trace’

else

do i=1,nsize

trace = trace + mat(i,i)

enddo

end if

end function trace

end module LinAl

Exercise 2: Create a file that contains, in the first line, 2 integers (separated
by a tab) that will be the number of lines and number of columns in the matrix,
and then write the matrix line by line. Separate each element by a tab. Call
this, for instance mymatrix.dat. Then compile and run this program as usual.
What happens? Note how in this case the program actually expects an argu-
ment right after calling the executable. To do so, (supposing your executable is
called myprog) type ./myprog mymatrix.dat. What happens then?

To understand this program step by step, note that

• This time the executable expects an argument. This is contained in
the iargc() command in the main program. That command counts
the number of arguments given to the main program. The lines from
if(iargc().ne.1) ... to endif simply say that if the number of argu-
ment given to the executable is not 1, (which is the expected number) then
the program has to stop. Otherwise, the next command getarg reads in
the argument, which is the name of the file to use. We shall use more of
this later on, and learn of the subtleties of the getarg command.

• The program itself is very short! Most of the action happens in the module.

4

• The module itself is written in such a way that there are many variables
global to all the functions and routines of the module. Note how nsize

and msize are declared before the contains statement, and therefore are
implicitly known by all the functions and routines of the module. Same
for i and j. This avoids having to pass them back and forth between the
program and the subprograms, and having to redeclare them every time.

• The array mat doesn’t really exist until it has been allocated. In the main
program, it is merely a pointer to a position in memory space. It is only in
the subroutine that this pointer is actually allocated an address, together
with all the bits afterwards that are needed to contain the whole array.

Exercise 3: Create a new routine in the module LinAl that finds and returns
the largest element (in absolute value) of the matrix, as well as its position. Call
that routine from the main program, and write a statement to the screen about
that element.

Exercise 4: Now modify your input matrix to have a different dimension.
Check that the program still works fine.

5

